یادگیری عمیق و کاربرد های آن در زیست پزشکی

یادگیری عمیق و کاربرد های آن در زیست پزشکی
complete-machine-learning-roadmap-for-data-science-and-ai-hamruyesh-com.jpg
پیشرفت های انتزاعی در زیست و تکنولوژی های زیستی، حجم بسیار زیادی از داده های زیستی و فیزیولوژیک را ایجاد کرده است، از جمله تصویر های پزشکی، الکتروانسفالوگرافی، نقشه های ژنوم و توالی های پروتئینی. یادگیری با استفاده از این داده ها منجر به تسهیل درک ما نسبت به سلامت و بیماری های انسان می شود. الگوریتم های مبتنی بر یادگیری عمیق که از شبکه های عصبی مصنوعی توسعه پیدا کرده اند، توانایی بالایی برای استخراج کردن ویژگی و الگوهای یادگیری از داده های پیچیده را از خودشان نشان داده اند. هدف این مقاله فراهم کردن مروری بر روی تکنیک های یادگیری عمیق و بعضی از جدید ترین کاربرد های آن ها در زمینه ی پزشکی می باشد. ما نخست توسعه ی شبکه های عصبی و یادگیری عمیق را ارائه می کنیم. سپس دو بخش اصلی از یادگیری عمیق، یعنی معماری یادگیری عمیق و بهینه سازی مدل را ارائه می کنیم. در نهایت بعضی از نمونه های کاربردی روش یادگیری عمیق ارائه می گردد ، از جمله طبقه بندی تصاویر پزشکی، تحلیل توالی ها، و همچنین طبقه بندی و پیش بینی کردن ساختار پروتئین ها. در نهایت، ما دیدگاه خودمان را در رابطه با جهت آتی در زمینه ی یادگیری عمیق را ارائه می کنیم
توضیحات

پیشرفت های انتزاعی در زیست و تکنولوژی های زیستی، حجم بسیار زیادی از داده های زیستی و فیزیولوژیک را ایجاد کرده است، از جمله تصویر های پزشکی، الکتروانسفالوگرافی، نقشه های ژنوم و توالی های پروتئینی. یادگیری با استفاده از این داده ها منجر به تسهیل درک ما نسبت به سلامت و بیماری های انسان می شود. الگوریتم های مبتنی بر یادگیری عمیق که از شبکه های عصبی مصنوعی توسعه پیدا کرده اند، توانایی بالایی برای استخراج کردن ویژگی و الگوهای یادگیری از داده های پیچیده را از خودشان نشان داده اند. هدف این مقاله فراهم کردن مروری بر روی تکنیک های یادگیری عمیق و بعضی از جدید ترین کاربرد های آن ها در زمینه ی پزشکی می باشد. ما نخست توسعه ی شبکه های عصبی و یادگیری عمیق را ارائه می کنیم. سپس دو بخش اصلی از یادگیری عمیق، یعنی معماری یادگیری عمیق و بهینه سازی مدل را ارائه می کنیم. در نهایت بعضی از نمونه های کاربردی روش یادگیری عمیق ارائه می گردد ، از جمله طبقه بندی تصاویر پزشکی، تحلیل توالی ها، و همچنین طبقه بندی و پیش بینی کردن ساختار پروتئین ها. در نهایت، ما دیدگاه خودمان را در رابطه با جهت آتی در زمینه ی یادگیری عمیق را ارائه می کنیم

یادگیری عمیق یکی از روش های جدید با رشد سریع در زمینه ی یادگیری ماشین می باشد. در این روش تلاش می شود تا استخراج ویژگی ها و اطلاعات مفید از داده هایی با مقیاس بزرگ، با استفاده از شبکه های عصبی عمیق چند لایه ای ( DNNها) ، استخراج شود تا بتوان از داده هایی مانند تصاویر، صداها و متن ها، اطلاعات مفید به دست آورد.


یادگیری عمیق به صورت عمومی دارای دو ویژگی می باشد : ۱) لایه های چندگانه از واحد های پردازش غیر خطی و ۲) یادگیری با سرپرست یا بدون سرپرست از نمایه ی ویژگی ها در هر لایه. قالب کاری اولیه برای یادگیری عمیق بر اساس شبکه های عصبی مصنوعی ( ANNها) در دهه ی ۱۹۸۰ ایجاد شد، در حالی که تاثیر واقعی این روش های یادگیری عمیق در سال ۲۰۰۶ نمایان شد. از آن زمان تا کنون، یادگیری عمیق در گستره ی زمینه های مختلف، شامل شناسایی خودکار گفتار، شناسایی تصویر، پردازش طبیعی زبان، شناسایی دارو و انفورماتیک زیستی مورد استفاده قرار گرفته است. در دهه های اخیر، رشد گسترده ای در زمینه ی داده های پزشکی مانند توالی های ژنی، ساختار پروتئین ها، و تصویر های پزشکی ایجاد شده است که به دلیل پیشرفت در تکنولوژی هایی با کارایی بالا بوده است. این طوفان گسترده از داده های بزرگ زیستی، منجر به الزام استفاده از ابزار محاسباتی موثر و کارآمد شده است تا بتوانیم این چنین داده هایی را ذخیره سازی، تحلیل و تفسیر کنیم. قالب های کاری یادگیری عمیق ، مسائل جدیدی را نمایان کرده اند. هدف این مقاله فراهم کردن یک مرور در رابطه با یادگیری عمیق و بعضی از جدید ترین کاربرد های یادگیری عمیق در زمینه ی پزشکی و انفورماتیک زیستی می باشد.ما امید داریم که این مقاله بتواند برای خوانندگان ، مروری مناسب در رابطه با یادگیری عمیق ایجاد کرده و کاربرد های آن برای تحلیل داده های زیستی را نمایان کند.


برای اطلاعات بیشتر با ما تماس بگیرید و یا نظرات خود را برای ما ارسال کنید تماس با ما